The shape of the wing is an important factor in determining the types of flight of which the bird is capable. Different shapes correspond to different trade-offs between beneficial characteristics, such as speed, low energy use, and maneuverability. The planform of the wing (the shape of the wing as seen from below) can be described in terms of two parameters, aspect ratio and wing loading. Aspect ratio is the ratio of wingspan to the mean of its chord (or the square of the wingspan divided by wing area). Wing loading is the ratio of weight to wing area.
Most kinds of bird wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots.
- Elliptical wings
- High speed wings
- High aspect ratio wings
- Soaring wings with deep slots
[edit] Hovering
Hovering is used by several species of birds (and specialized in by one family). True hovering, which is generating lift through flapping alone rather than as a product of the bird's passage through the air, demands a lot of energy. This means that it is confined to smaller birds; the largest bird able to truly hover is the pied kingfisher, although larger birds can hover for short periods of time. Larger birds that hover for prolonged periods do so by flying into a headwind, allowing them to remain stationary relative to the ground (or water). Kestrels, terns and even hawks use this windhovering.Most birds that hover have high aspect ratio wings that are suited to low speed flying. One major exception to this are the hummingbirds, which are the most accomplished hoverers of all the birds. Hummingbird flight is different from other bird flight in that the wing is extended throughout the whole stroke, the stroke being a symmetrical figure of eight, with the wing producing lift on both the up- and down-stroke. Some hummingbirds can beat their wings 52 times a second, though others do so less frequently.
[edit] Take-off and landing
Take-off is one of the most energetically demanding aspects of flight, as the bird needs to generate enough airflow across the wing to create lift. With small birds a jump up will suffice, while for larger birds this is not possible. In this situation, birds need to take a run up in order to generate the airflow to take off. Large birds take off by facing into the wind, or, if they can, by perching on a branch or cliff so that all they need to do is drop off into the air.Landing is also a problem for large birds with high wing loadings. This problem is dealt with in some species by aiming for a point below the intended landing area (such as a nest on a cliff) then pulling up beforehand. If timed correctly, the airspeed once the target is reached is virtually nil. Landing on water is simpler, and the larger waterfowl species prefer to do so whenever possible, landing into wind and using their feet as skids. In order to lose height rapidly prior to landing, some large birds such as geese indulge in a rapid alternating series of sideslips in a maneuver termed as whiffling.
No comments:
Post a Comment