Monday, January 31, 2011

[edit] Short-distance and altitudinal migration

Many long-distance migrants appear to be genetically programmed to respond to changing day length. Species that move short distances, however, may not need such a timing mechanism, and may move in response to local weather conditions.
Thus mountain and moorland breeders, such as Wallcreeper and White-throated Dipper, may move only altitudinally to escape the cold higher ground. Other species such as Merlin and Skylark will move further to the coast or to a more southerly region. Species like the Chaffinch are not migratory in Britain, but will move south or to Ireland in very cold weather.
Short-distance passerine migrants have two evolutionary origins. Those that have long-distance migrants in the same family, such as the Chiffchaff, are species of southern hemisphere origins that have progressively shortened their return migration to stay in the northern hemisphere.
Species that have no long-distance migratory relatives, such as the waxwings, are effectively moving in response to winter weather, rather than enhanced breeding opportunities.
In the tropics there is little variation in the length of day throughout the year, and it is always warm enough for a food supply (although because of competition, there may not be enough food for every bird). Migration within the tropics has been far less studied than in the temperate zones. It was once assumed that tropical birds were mostly sedentary; however, altitudinal migration and other within-tropics movements appear to be surprisingly common (citation needed). Many tropical regions have wet and dry seasons, inducing some birds to migrate or wander widely to find food. Indeed, the monsoons of India are preceded by the arrival of the Jacobin Cuckoo, the "harbinger of the monsoon". Other examples include the Woodland Kingfisher of west Africa and many Australian birds.
There are a few species, notably cuckoos, which are genuine long-distance migrants within the tropics. An example is the Lesser Cuckoo, which breeds in India and spends the non-breeding season in Africa. Such examples help make the case that food supplies, not weather per se, drive migration patterns.
Altitudinal migration is common on mountains worldwide, such as in the Himalayas and the Andes. Quite often, altitudinal migration is combined with distance migration; for example, the Himalayan Kashmir Flycatcher and Pied Thrush both move as far south as the highlands of Sri Lanka. Altitudinal migration may even be important to birds living on relatively small islands, such as the Hawaiian Islands, which have high mountains.

[edit] Irruptions and dispersal

Sometimes circumstances such as a good breeding season followed by a food source failure the following year lead to irruptions in which large numbers of a species move far beyond the normal range. Bohemian Waxwing and Common Crossbills show this unpredictable variation in annual numbers.
The temperate zones of the southern continents have extensive arid areas, particularly in Australia and western southern Africa, and weather-driven movements are common but not always predictable. A couple of weeks of heavy rain in one part or another of the usually dry centre of Australia, for example, causes dramatic plant and invertebrate growth, attracting birds from all directions. This can happen at any time of year, and, in any given area, may not happen again for a decade or more, depending on the frequency of El Niño and La Niña periods.
Bird migration is primarily, but not entirely, a Northern Hemisphere phenomenon. In the Southern Hemisphere, seasonal migration tends to be much less obvious. There are several reasons for this.
First, the largely uninterrupted expanses of land mass or ocean tend not to funnel migrations into narrow and obvious pathways, making them less obvious to the human observer. Second, at least for terrestrial birds, climatic regions tend to fade into one another over a long distance rather than be entirely separate: this means that rather than make long trips over unsuitable habitat to reach particular destinations, migrant species can usually travel at a relaxed pace, feeding as they go. Short of banding studies it is often not obvious that the birds seen in any particular locality as the seasons change are in fact different members of the same species passing through, gradually working their way north or south.
Many species do in fact breed in the temperate southern hemisphere regions and winter further north in the tropics. The southern African Greater Striped Swallow, and the Australian Satin Flycatcher, Dollarbird, and Rainbow Bee-eater for example, winters well north of their breeding range.

[edit] Physiology and control

The control of migration, its timing and response are genetically controlled and appear to be a primitive trait that is present even in non-migratory species of birds. The ability to navigate and orient themselves during migration is a much more complex phenomenon that may include both endogenous programs as well as learning.[20]

[edit] Timing

The primary physiological cue for migration are the changes in the day length. These changes are also related to hormonal changes in the birds.
In the period before migration, many birds display higher activity or Zugunruhe (German: migratory restlessness) as well as physiological changes such as increased fat deposition. The occurrence of Zugunruhe even in cage-raised birds with no environmental cues (e.g. shortening of day and falling temperature) has pointed to the role of circannual endogenous programs in controlling bird migrations. Caged birds display a preferential flight direction that corresponds with the migratory direction they would take in nature, even changing their preferential direction at roughly the same time their wild conspecifics change course.
In species where there is polygyny and with considerable sexual dimorphism, there is a tendency for males to return earlier to the breeding sites than their females. This is termed as protandry.[21][22]

No comments:

Post a Comment