Monday, January 31, 2011

[edit] Neurophysiology

The main brain areas involved in bird song are:
  • Anterior forebrain pathway (vocal learning): composed of the lateral part of the magnocellular nucleus of anterior neostriatum (LMAN), which is a homologue to mammalian basal ganglia); Area X, which is part of the basal ganglia; and the Dorso-Lateral division of the Medial thalamus (DLM).
  • Song production pathway: composed of the HVC (sometimes, inaccurately, called the Hyperstriatum Ventralis pars Caudalis); robust nucleus of the arcopallium (RA); and the tracheosyringeal part of the hypoglossal nucleus (nXIIts).[45][46]
Both pathways show sexual dimorphism, with the male producing song most of the time.[47] It has been noted that injecting testosterone in non-singing female birds can induce growth of the HVC and thus production of song.
Birdsong production is generally thought to start at the nucleus uvaeformis of the thalamus with signals emanating along a pathway that terminates at the syrinx. The pathway from the thalamus leads to the interfacial nucleus of the nidopallium to the HVC, and then to RA, the dorso-lateral division of the medial thalamus and to the tracheosyringeal nerve.
The gene FOXP2, defects of which affect both speech and comprehension of language in humans, becomes more active in the striatal region of songbirds during the time of song learning.[48]
Recent research in birdsong learning has focused on the Ventral Tegmental Area (VTA), which sends a dopamine input to the para-olfactory lobe and Area X, LMAN and the ventrolateral medulla. Other researchers have explored the possibility that HVc is responsible for syllable production, while the robust nucleus of the arcopallium, the primary song output nucleus, may be responsible for syllable sequencing and production of notes within a syllable.[citation needed]

[edit] Learning

The songs of different species of birds vary, and are more or less characteristic of the species. In modern-day biology, bird song is typically analysed using acoustic spectroscopy. Species vary greatly in the complexity of their songs and in the number of distinct kinds of song they sing (up to 3000 in the Brown Thrasher); in some species, individuals vary in the same way. In a few species such as starlings and mockingbirds, songs imbed arbitrary elements learned in the individual's lifetime, a form of mimicry (though maybe better called "appropriation" [Ehrlich et al.], as the bird does not pass for another species). As early as 1773 it was established that birds learnt calls and cross-fostering experiments were able to force a Linnet Acanthis cannabina to learn the song of a skylark Alauda arvensis.[49] In many species it appears that although the basic song is the same for all members of the species, young birds learn some details of their songs from their fathers, and these variations build up over generations to form dialects.[50]
Birds learn songs early in life with sub-vocalizations that develop into renditions of adult songs. Zebra Finches, the most popular species for birdsong research, develop a version of a familiar adult's song after 20 or more days from hatch. By around 35 days, the chick will have learned the adult song. The early song is "plastic" or variable and it takes the young bird two or three months to perfect the "crystallized" song (which is less variable) of sexually mature birds.[51]
Timeline for song learning in different species. Diagram adapted from Brainard & Doupe, 2002[52]..
Research indicates birds' acquisition of song is a form of motor learning that involves regions of the basal ganglia. Models of bird-song motor learning are sometimes used as models for how humans learn speech.[53] In some species such as zebra finches, learning of song is limited to the first year; they are termed 'age-limited' or 'close-ended' learners. Other species such as the canaries can develop new songs even as sexually mature adults; these are termed 'open-ended' learners.[54][55]
Researchers have hypothesized that learned songs allow the development of more complex songs through cultural interaction, thus allowing intraspecies dialects that help birds stay with their own kind within a species, and it allows birds to adapt their songs to different acoustic environments.[56]

[edit] Auditory feedback in bird song learning

Early experiments by Thorpe in 1954 showed the importance of a bird being able to hear a tutor's song. When birds are raised in isolation, away from the influence of conspecific males, they still sing. While the song they produce resembles the song of a wild bird, it lacks the complexity and sounds distinctly different.[57] The importance of the bird being able to hear himself sing in the sensorimotor period was later discovered by Konishi. Birds deafened before the song crystallization period went on to produce very different songs from the wild type.[58] These findings lead scientists to believe there could be a specific part of the brain dedicated to this specific type of learning.
Song learning pathway in birds (Based on Nottebohm, 2005)
The main focus in the search for the neuronal aspect of bird song learning was guided by the song template hypothesis. This hypothesis is the idea that when a bird is young he memorizes the song of his tutor. Later, during the development phase as an adult, he matches his own trial vocalizations using auditory feedback to an acoustic template in the brain. Based on this information, he adjusts his song if needed. To find this "song template," experimenters lesioned certain parts of the brain and observed the effects.
  • Lesioning the song production pathway (RA, xXII or HVc) in the brain creates serious effects on song production in all birds.[59]
  • Lesions parts of the anterior forebrain pathway, or vocal learning pathway, DLM and area X, result in deficits in learning in all birds.[47]
  • Lesioning LMAN, located in the anterior forebrain pathway in young birds disrupts song production.[47]
  • Lesioning LMAN on an adult bird shows no effect.[47]
  • Lesioning LMAN on an adult canary (an "open-ended learner" species, which can learn songs later in life) shows a progressive deterioration of song.[47]
These results show that the area known as LMAN is the only brain area in the pathway that shows some plasticity and further studies have shown that this area of the brain responds best to the bird's own song.[45][52][60] This neuroplasticity is vital for a bird being able to learn a song. The ability to make small adjustments based on auditory feedback is needed for the complexity of these beautiful songs. Just like any musician, birds need to practice and be able to evaluate what their song sounds like and what it's supposed to sound like in order to get it right.
To complete the picture on bird song learning, experimenters needed to discover the true plasticity of the brain. While deafening and creating auditory isolation were good techniques for discovering basic characteristics about the brain, a reversible procedure was needed to investigate further. The solution was found in disruption of the auditory feedback, or what a bird hears. A computer is able to capture the song of a singing bird and play back portions of its song, or selectively play back a certain syllable while the bird is singing. The computer is basically playing the age old trick of repeating whatever the bird sings, the "stop copying me" game. This creates such a disruption that an adult bird will start to decrystallize its song, which includes a loss of spectral and temporal rigidity characteristic of adult song. It reverts back to the song it started singing with, before any learning took place. Furthermore, when the feedback was stopped, the birds slowly recovered their original song, something that was unheard of. These results show that there is a fair amount of plasticity retained in the brain, even for close-ended learners.[61] This new found plasticity in adult birds and the results on the plasticity of LMAN (shown above) combine into a model for bird song learning (diagram coming soon).[62]

No comments:

Post a Comment