Bird
From Wikipedia, the free encyclopediaJump to: navigation, search
For other uses, see Bird (disambiguation).
Aves and Avifauna redirect here. For other uses, see Aves (disambiguation) or Avifauna (disambiguation).Birds (class Aves) are winged, bipedal, endothermic (warm-blooded), egg-laying, vertebrate animals. There are around 10,000 living species, making them the most varied of tetrapod vertebrates. They inhabit ecosystems across the globe, from the Arctic to the Antarctic. Extant birds range in size from the 5 cm (2 in) Bee Hummingbird to the 2.75 m (9 ft) Ostrich. The fossil record indicates that birds evolved from theropod dinosaurs during the Jurassic period, around 150–200 Ma (million years ago), and the earliest known bird is the Late Jurassic Archaeopteryx, c 150–145 Ma. Most paleontologists regard birds as the only clade of dinosaurs to have survived the Cretaceous–Tertiary extinction event approximately 65.5 Ma.
For other uses, see Bird (disambiguation).
Aves and Avifauna redirect here. For other uses, see Aves (disambiguation) or Avifauna (disambiguation).Birds (class Aves) are winged, bipedal, endothermic (warm-blooded), egg-laying, vertebrate animals. There are around 10,000 living species, making them the most varied of tetrapod vertebrates. They inhabit ecosystems across the globe, from the Arctic to the Antarctic. Extant birds range in size from the 5 cm (2 in) Bee Hummingbird to the 2.75 m (9 ft) Ostrich. The fossil record indicates that birds evolved from theropod dinosaurs during the Jurassic period, around 150–200 Ma (million years ago), and the earliest known bird is the Late Jurassic Archaeopteryx, c 150–145 Ma. Most paleontologists regard birds as the only clade of dinosaurs to have survived the Cretaceous–Tertiary extinction event approximately 65.5 Ma.
Modern birds are characterised by feathers, a beak with no teeth, the laying of hard-shelled eggs, a high Australian wood duck Evolution and taxonomyMain article: Evolution of birdsmetabolic rate, a four-chambered heart, and a lightweight but strong skeleton. All living species of birds have wings - the now extinct flightless Moa of New Zealand were the only exceptions. Wings are evolved forelimbs, and most bird species can fly, with some exceptions including ratites, penguins, and a number of diverse endemic island species. Birds also have unique digestive and respiratory systems that are highly adapted for flight. Some birds, especially corvids and parrots, are among the most intelligent animal species; a number of bird species have been observed manufacturing and using tools, and many social species exhibit cultural transmission of knowledge across generations.
Many species undertake long distance annual migrations, and many more perform shorter irregular movements. Birds are social; they communicate using visual signals and through calls and songs, and participate in social behaviours including cooperative breeding and hunting, flocking, and mobbing of predators. The vast majority of bird species are socially monogamous, usually for one breeding season at a time, sometimes for years, but rarely for life. Other species have breeding systems that are polygynous ("many females") or, rarely, polyandrous ("many males"). Eggs are usually laid in a nest and incubated by the parents. Most birds have an extended period of parental care after hatching.
Many species are of economic importance, mostly as sources of food acquired through hunting or farming. Some species, particularly songbirds and parrots, are popular as pets. Other uses include the harvesting of guano (droppings) for use as a fertiliser. Birds figure prominently in all aspects of human culture from religion to poetry to popular music. About 120–130 species have become extinct as a result of human activity since the 17th century, and hundreds more before then. Currently about 1,200 species of birds are threatened with extinction by human activities, though efforts are underway to protect them.
Evolution and taxonomyMain article: Evolution of birds
Archaeopteryx, the earliest known birdThe first classification of birds was developed by Francis Willughby and John Ray in their 1676 volume Ornithologiae.[2] Carolus Linnaeus modified that work in 1758 to devise the taxonomic classification system currently in use.[3] Birds are categorised as the biological class Aves in Linnaean taxonomy. Phylogenetic taxonomy places Aves in the dinosaur clade Theropoda.[4] Aves and a sister group, the clade Crocodilia, contain the only living representatives of the reptile clade Archosauria. Phylogenetically, Aves is commonly defined as all descendants of the most recent common ancestor of modern birds and Archaeopteryx lithographica.[5]
Evolution and taxonomyMain article: Evolution of birds
Archaeopteryx, the earliest known birdThe first classification of birds was developed by Francis Willughby and John Ray in their 1676 volume Ornithologiae.[2] Carolus Linnaeus modified that work in 1758 to devise the taxonomic classification system currently in use.[3] Birds are categorised as the biological class Aves in Linnaean taxonomy. Phylogenetic taxonomy places Aves in the dinosaur clade Theropoda.[4] Aves and a sister group, the clade Crocodilia, contain the only living representatives of the reptile clade Archosauria. Phylogenetically, Aves is commonly defined as all descendants of the most recent common ancestor of modern birds and Archaeopteryx lithographica.[5]
Archaeopteryx, from the Tithonian stage of the Late Jurassic (some 150–145 million years ago), is the earliest known bird under this definition. Others, including Jacques Gauthier and adherents of the Phylocode system, have defined Aves to include only the modern bird groups, the crown group. This has been done by excluding most groups known only from fossils, and assigning them, instead, to the Avialae[6] in part to avoid the uncertainties about the placement of Archaeopteryx in relation to animals traditionally thought of as theropod dinosaurs.
All modern birds lie within the subclass Neornithes, which has two subdivisions: the Palaeognathae, containing birds that are flightless (like ostriches) or weak fliers, and the wildly diverse Neognathae, containing all other birds.[4] These two subdivisions are often given the rank of superorder,[7] although Livezey and Zusi assigned them "cohort" rank.[4] Depending on the taxonomic viewpoint, the number of known living bird species varies anywhere from 9,800[8] to 10,050.[9]Dinosaurs and the origin of birdsMain article: Origin of birds
Confuciusornis, a Cretaceous bird from ChinaBased on fossil and biological evidence, most scientists accept that birds are a specialized sub-group of theropod dinosaurs.[10] More specifically, they are members of Maniraptora, a group of theropods which includes dromaeosaurs and oviraptorids, among others.[11] As scientists discover more non-avian theropods that are closely related to birds, the previously clear distinction between non-birds and birds has become blurred. Recent discoveries in the Liaoning Province of northeast China, which demonstrate that many small theropod dinosaurs had feathers, contribute to this ambiguity.[12]
Confuciusornis, a Cretaceous bird from ChinaBased on fossil and biological evidence, most scientists accept that birds are a specialized sub-group of theropod dinosaurs.[10] More specifically, they are members of Maniraptora, a group of theropods which includes dromaeosaurs and oviraptorids, among others.[11] As scientists discover more non-avian theropods that are closely related to birds, the previously clear distinction between non-birds and birds has become blurred. Recent discoveries in the Liaoning Province of northeast China, which demonstrate that many small theropod dinosaurs had feathers, contribute to this ambiguity.[12]
The consensus view in contemporary paleontology is that the birds, Aves, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids. Together, these three form a group called Paraves. The basal dromaeosaur Microraptor has features which may have enabled it to glide or fly. The most basal deinonychosaurs are very small. This evidence raises the possibility that the ancestor of all paravians may have been arboreal, may have been able to glide, or both.[13][14]
The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found and it provided support for the theory of evolution in the late 19th century. Archaeopteryx has clearly reptilian characteristics: teeth, clawed fingers, and a long, lizard-like tail, but it has finely preserved wings with flight feathers identical to those of modern birds. It is not considered a direct ancestor of modern birds, but is the oldest and most primitive known member of Aves or Avialae, and it is probably closely related to the real ancestor.[15]
Alternative theories and controversies
Alternative theories and controversies
There have been many controversies in the study of the origin of birds. Early disagreements included whether birds evolved from dinosaurs or more primitive archosaurs. Within the dinosaur camp there were disagreements as to whether ornithischian or theropod dinosaurs were the more likely ancestors.[16] Although ornithischian (bird-hipped) dinosaurs share the hip structure of modern birds, birds are thought to have originated from the saurischian (lizard-hipped) dinosaurs, and therefore evolved their hip structure independently.[17] In fact, a bird-like hip structure evolved a third time among a peculiar group of theropods known as the Therizinosauridae. A few scientists suggest that birds are not dinosaurs, but evolved from early archosaurs like Longisquama.[18][19]
No comments:
Post a Comment