Thursday, February 3, 2011

[edit] Adaptations for flight

1 Axillaries; 2 Margin (Marginal underwing coverts); 3 Lesser underwing coverts; 4 Median underwing coverts (Secondary coverts); 5 Greater underwing coverts (Secondary coverts); 6 Carpal joint; 7 Lesser underwing primary coverts; 8 Greater undering primary coverts; 9 Secondaries; 10 Primaries
The most obvious adaptation to flight is the wing, but because flight is so energetically demanding birds have evolved several other adaptations to improve efficiency when flying. Birds' bodies are streamlined to help overcome air-resistance. Also, the bird skeleton is hollow to reduce weight, and many unnecessary bones have been lost (such as the bony tail of the early bird Archaeopteryx), along with the toothed jaw of early birds, which has been replaced with a lightweight beak. The skeleton's breastbone has also adapted into a large keel, suitable for the attachment of large, powerful flight muscles. The vanes of the feathers have hooklets called barbules that zip them together, giving the feathers the strength needed to hold the airfoil (these are often lost in flightless birds).
The large amounts of energy required for flight have led to the evolution of a unidirectional pulmonary system to provide the large quantities of oxygen required for their high respiratory rates. This high metabolic rate produces large quantities of radicals in the cells that can damage DNA and lead to tumours. Birds, however, do not suffer from an otherwise expected shortened lifespan as their cells have evolved a more efficient antioxidant system than those found in other animals.[citation needed]

[edit] Evolution of bird flight

Marine birds fly at Cape Hay in the High Arctic
Most paleontologists agree that birds evolved from small theropod dinosaurs, but the origin of bird flight is one of the oldest and most hotly contested debates in paleontology.[3] The four main hypotheses are: "from the trees down", that birds' ancestors first glided down from trees and then acquired other modifications that enabled true powered flight; "from the ground up", that birds' ancestors were small, fast predatory dinosaurs in which feathers developed for other reasons and then evolved further to provide first lift and then true powered flight; and "wing-assisted incline running" (WAIR), a version of "from the ground up" in which birds' wings originated from forelimb modifications that provided downforce, enabling the proto-birds to run up extremely steep slopes such as the trunks of trees; and "Pouncing Proavis", which posits that flight evolved by modification from arboreal ambush tactics.
There has also been debate about whether the earliest known bird, Archaeopteryx, could fly. It appears that Archaeopteryx had the brain structures and inner-ear balance sensors that birds use to control their flight.[4] Archaeopteryx also had a wing feather arrangement like that of modern birds and similarly asymmetrical flight feathers on its wings and tail. But Archaeopteryx lacked the shoulder mechanism by which modern birds' wings produce swift, powerful upstrokes; this may mean that it and other early birds were incapable of flapping flight and could only glide.[5] The presence of most fossils in marine sediments in habitats devoid of vegetation has led to the hypothesis that they may have used their wings as aids to run across the water surface in the manner of the basilisk lizards.[6]

[edit] From the trees down

This was the earliest hypothesis, encouraged by the examples of gliding vertebrates such as flying squirrels. It suggests that proto-birds like Archaeopteryx used their claws to clamber up trees and glided off from the tops.[7]
Some recent research undermines the "trees down" hypothesis by suggesting that the earliest birds and their immediate ancestors did not climb trees. Modern birds that forage in trees have much more curved toe-claws than those that forage on the ground. The toe-claws of Mesozoic birds and of closely-related non-avian theropod dinosaurs are like those of modern ground-foraging birds.[8]

[edit] From the ground up

Feathers are very common in coelurosaurid dinosaurs (including the early tyrannosauroid Dilong).[9] Modern birds are classified as coelurosaurs by nearly all palaeontologists,[10] though not by a few ornithologists.[7][11] The original functions of feathers may have included thermal insulation and competitive displays. The most common version of the "from the ground up" hypothesis argues that bird's ancestors were small ground-running predators (rather like roadrunners) that used their forelimbs for balance while pursuing prey and that the forelimbs and feathers later evolved in ways that provided gliding and then powered flight.[12] Another "ground upwards" theory argues the evolution of flight was initially driven by competitive displays and fighting: displays required longer feathers and longer, stronger forelimbs; many modern birds use their wings as weapons, and downward blows have a similar action to that of flapping flight.[13] Many of the Archaeopteryx fossils come from marine sediments and it has been suggested that wings may have helped the birds run over water in the manner of the Jesus Christ Lizard (Common basilisk).[14]
Most recent attacks on the "from the ground up" hypothesis attempt to refute its assumption that birds are modified coelurosaurid dinosaurs. The strongest attacks are based on embryological analyses, which conclude that birds' wings are formed from digits 2, 3 and 4 (corresponding to the index, middle and ring fingers in humans; the first of a bird's 3 digits forms the alula, which they use to avoid stalling on low-speed flight, for example when landing); but the hands of coelurosaurs are formed by digits 1, 2 and 3 (thumb and first 2 fingers in humans).[15] However these embryological analyses were immediately challenged on the embryological grounds that the "hand" often develops differently in clades that have lost some digits in the course of their evolution, and therefore bird's hands do develop from digits 1, 2 and 3.[16][17][18]

[edit] Wing-assisted incline running

The WAIR hypothesis was prompted by observation of young chukar chicks, and proposes that wings developed their aerodynamic functions as a result of the need to run quickly up very steep slopes such as tree trunks, for example to escape from predators. Note that in this scenario birds need downforce to give their feet increased grip.[19][20] But early birds, including Archaeopteryx, lacked the shoulder mechanism by which modern birds' wings produce swift, powerful upstrokes; since the downforce on which WAIR depends is generated by upstrokes, it seems that early birds were incapable of WAIR.[5]

[edit] Pouncing Proavis model

This theory was first proposed by Garner, Taylor, and Thomas in 1999:
We propose that birds evolved from predators that specialized in ambush from elevated sites, using their raptorial hindlimbs in a leaping attack. Drag–based, and later lift-based, mechanisms evolved under selection for improved control of body position and locomotion during the aerial part of the attack. Selection for enhanced lift-based control led to improved lift coefficients, incidentally turning a pounce into a swoop as lift production increased. Selection for greater swooping range would finally lead to the origin of true flight.
The authors believed that this theory had four main virtues:
  • It predicts the observed sequence of character acquisition in avian evolution.
  • It predicts an Archaeopteryx-like animal, with a skeleton more or less identical to terrestrial theropods, with few adaptations to flapping, but very advanced aerodynamic asymmetrical feathers.
  • It explains that primitive pouncers (perhaps like Microraptor) could coexist with more advanced fliers (like Confuciusornis or Sapeornis) since they did not compete for flying niches.
  • It explains that the evolution of elongated rachis-bearing feathers began with simple forms that produced a benefit by increasing drag. Later, more refined feather shapes could begin to also provide lift.

[edit] Uses and loss of flight in modern birds

Birds use flight to obtain prey on the wing, for foraging, to commute to feeding grounds, and to migrate between the seasons. It is also used by some species to display during the breeding season and to reach safe isolated places for nesting.
Flight is more energetically expensive in larger birds, and many of the largest species fly by soaring and gliding (without flapping their wings) as much as possible. Many physiological adaptations have evolved that make flight more efficient.
Birds that settle on isolated oceanic islands that lack ground-based predators often lose the ability to fly. This illustrates both flight's importance in avoiding predators and its extreme demand for energy.

No comments:

Post a Comment